The best VPN 2024

The Best VPS 2024

The Best C# Book

Defect Prevention Reducing Costs and Enhancing Quality

Spread the love

Implementation is the toughest of all activities of defect prevention. It requires total commitment from the development team and management. A plan of action is made for deployment of the modification of the existing processes or introduction of the new ones with the consent of management and the team. Some of the other activities in this phase of defect prevention are:

Most of the activities of the defect prevention methodology require a facilitator. The facilitator can be the software development project leader (wearing another hat of responsibility) or any member of the team. The designated defect prevention coordinator is actively involved in leading defect prevention efforts, facilitating meetings and communication among team and management, and consolidating the defect prevention measures/guidelines.

Effective defect tracking begins with a systematic process. A structured tracking process begins with initially logging the defects, investigating the defects, then providing the structure to resolve them. Defect analysis and reporting offer a powerful means to manage defects and defect depletion trends, hence, costs.

Figure 3: Origin of Software Defects (Source: Crosstalk, the Journal of Defense Software Engineering)

The people who really understand what went wrong are the people present when the defects were inserted members of the software engineering team. They can give the best suggestions for how to avoid such defects in the future.

The analysis should lead to implementing changes in processes that help prevent defects and ensure their early detection.

Peer review is similar to self-review in terms of the objective  the only difference is that it is a peer (someone who understands the functionality of the code very well) who reviews the code. The advantage is that of a fresh pair of eyes.

Reducing the defects to improve the quality:

Software Vendor Partnership Cost Reduction with Six Sigma

Fortnightly or monthly (based on the project schedule) meetings to make the team aware of the systematic errors/defects, their symptoms and solutions.

Often, a self-review of the code helps reduce the defects related to algorithm implementations, incorrect logic or certain missing conditions. Once the developer feels they are ready with the module code, a glance through the code and understanding what it does compared to what it is supposed to do, would complete the self-review.

What I dont like about this article, the data comparison is from 1998. Should I take it seriously or not?

Can software defects be prevented by simply logging them into some defect tracking tool/system, documenting them and providing fixes for them? The obvious answer is no, though this is the first step toward defect prevention.

comment bubble

Phase at which it is found  so that preventive measures can be taken and propagation of the defect to next phase (software build) is avoided.

Monthly status of the team should mention the severe defects and their analyses.

Agree with Steve. Please provide a link to the IBM System Sciences Institute Report.

Further description of the defect by screenshots.

cost reductiondefectsQualitySoftware

Figure 1: Relative Costs to Fix Software Defects (Source: IBM Systems Sciences Institute)

After defects are logged and documented, the next step is to analyze them. Generally the designated defect prevention coordinator or development project leader facilitates a meeting to explore root causes.

Better communication among the project team and upper management

Figure 5: Cause-and-Effect Diagram for a Defect

Correct and complete description of the defect  so that everyone on the development team understands what it is and how to reproduce it.

Names of those who uncover defects  so everyone knows who to contact for a better understanding of the defect.

How does a defect prevention mechanism work? The answer is in a defect prevention cycle (Figure 2). The integral part of the defect prevention process begins with requirement analysis translating the customer requirements into product specifications without introducing additional errors. Software architecture is designed, code review and testing are done to find out the defects, followed by defect logging and documentation.

can you please share the estimated cost to be spend after identification of error in each phase ?

If You Loved This Article, You Might Also Love

Defect Prevention: Reducing Costs and Enhancing Quality

Improved checklist for product quality

Defect Prevention: Reducing Costs and Enhancing Quality

The root cause analysis of a defect is driven by three key principles:

other iSixSigma newsletter subscribers:

Core Set of Effectiveness Metrics for Software and IT

Thanks for sharing this nice article! Root cause analysis and documentation are what I was after.

Hence, it is important to have a proper process of analyzing the requirements in place to ensure that the customer needs are correctly translated into product specifications. Perhaps two or three iteration of interactive sessions with the customer can be of great help in verifying the understanding of the developer about actual requirements.

Prevention is better than cure applies to defects in the software development life cycle as well as illnesses in medical science. Defects, as defined by software developers, are variances from a desired attribute. These attributes include complete and correct requirements and specifications as drawn from the desires of potential customers. Thus, defects cause software to fail to meet requirements and make customers unhappy.

Where can I find proof for the claims made in Figure 1 which are supposedly released by IBM but cant be found anywhere?

Agreed, this is a great article and some really useful diagrams to boot.

Embedding the defect prevention measures in software development life cycle processes.

From the studies made by various software development communities, it is evident that most failures in software products are due to errors in the requirements and design phases  as high as 64 percent of total defect costs (Figure 3), according toCrosstalk, the Journal of Defense Software Engineering.

The cause-and-effect diagram, also known as a fishbone diagram, is a simple graphical technique for sorting and relating factors that contribute to a given situation. A team usually develops the cause-and-effect diagram in a facilitated brainstorming session. Once the root causes are documented, finding ways to eliminate them requires another round of brainstorming. The object is to determine what changes should be incorporated in the processes so that recurrence of the defects can be minimized.

How serious are defects in software development? In the United States, up to 60 percent of software developers are involved in fixing errors,Computer Finance Magazinereported in 1998. This fact alone, without consideration of providing the quality needed to please customers, shows the value of preventing software defects.

There may be many errors or defects to be handled in such an analysis forum; however, some mistakes tend to be repeated. These systematic errors account for a large portion of the defects found in the typical software project. Identifying and preventing systematic errors can have a big impact on quality (in terms of defects) for a relatively small investment.

Data to support the need for early fixes of software defects is supplied by several reports. The National Institute of Standard Technology (NIST) published a study in 2002 noting that the cost of fixing one bug found in the production stage of software is 15 hours compared to five hours of effort if the same bug were found in the coding stage.

Root cause analysis is the process of finding and eliminating the cause, which would prevent the problem from recurring. Finding the causes and eliminating them are equally important.

Finally, defect prevention is not an individual exercise but a team effort. The software development team should be striving to improve its process by identifying defects early, minimizing resolution time and therefore reducing project costs.

And when a defect gets through during the development process, the earlier it is diagnosed, the easier and cheaper is the rectification of the defect. The end result in prevention or early detection is a product with zero or minimal defects.

Cost of a Process with Poor Quality Can Be Very High

Figure 1: Relative Costs to Fix Software Defects (Source: IBM Systems Sciences Institute)

Significant reduction the number of defects and their severity

Figure 4: Example of Defect Classification in a Pareto Chart

The Systems Sciences Institute at IBM has reported that the cost to fix an error found after product release was four to five times as much as one uncovered during design, and up to 100 times more than one identified in the maintenance phase (Figure 1).

With these guidelines, defects are analyzed to determine their origins. A collection of such causes will help in doing the root cause analysis. The defects are classified based on their types. A Pareto chart is prepared to show the defect category with the highest frequency of occurrence the target. An example of defect classification in a Pareto chart is shown in Figure 4.

A defect logging tool should document certain vital information regarding the defect such as:

Learning from the previous projects root cause analysis of defects should be used as the baseline for future projects.

Errors in software requirements and software design documents are more frequent than errors in the source code itself, according toComputer Finance Magazine. Defects introduced during the requirements and design phase are not only more probable but also are more severe and more difficult to remove. Front-end errors in requirements and design cannot be found and removed via testing, but instead need pre-test reviews and inspections. Table 1 shows the defects introduced during different phases of the software development life cycle.

Monitoring the defect prevention progress. Is the number of defects decreasing? Is the development team learning from past mistakes?

Self-review is one of the most effective activites in uncovering the defects which may later be discovered by a testing team or directly by a customer. The majority of the software organizations are now making this a part of coding best practices and are really increasing their product quality.

Figure 2: Defect Prevention Cycle (Source: 1998 IEEE Software Productivity Consortium)

The blocks and processes in the gray-colored block represent the handling of defects within the existing philosophy of most of the software industry  defect detection, tracking/documenting and analysis of defects for arriving at quick, short-term solutions.

Thanks for putting together this post on Defect Prevention: Reducing Costs and Enhancing Quality .It is a great read. I particularly find your thoughts about Defect Logging and Documentation interesting.Keep up these insightful posts.

Each defect category and the causes making those defects happen can be represented using a cause-and-effect diagram, as shown in Figure 5.

To err is human but defect prevention practices enhance the ability of software developers to learn from those errors and, more importantly, learn from the mistakes of others. The benefits of implementing a defect prevention methodology are:

The processes that form the integral part of the defect prevention methodology are on the white background. The vital process of the defect prevention methodology is to analyze defects to get their root causes, to determine a quick solution and preventive action. These preventive measures, after consent and commitments from team members, are embedded into the organization as a baseline for future projects. The methodology is aimed at providing the organization a long-term solution and the maturity to learn from mistakes.

The five general activities of defect prevention are:

4. Root Cause Analysis and Preventive Measures Determination

Enhancing IT Quality Metrics with Six Sigma

80f19dbdf6729d93259bbfe791d261ca bpthumb

Thanks for the wonderful training material. I have got to know so many things about quality matrix and tools.

Defect prevention involves a structured problem-solving methodology to identify, analyze and prevent the occurrence of defects. Defect prevention is a framework and ongoing process of collecting the defect data, doing root cause analysis, determining and implementing the corrective actions and sharing the lessons learned to avoid future defects.

Leave a Comment